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1.0 Project Description and Objectives 
 
The cloud fields are very important for the air quality application. The cloud can alter 
radiation transfer, which controls the reaction rate of photochemistry. The cloud can 
also affect the formation, transportation, and the lifetime of many gaseous and 
particulate species. The meso-scale model WRF is widely used in simulate the local 
meteorology and prepare the cloud fields as inputs for the purpose of predicting air 
quality. As demonstrated in many previous studies, WRF is able to capture the “general 
picture” of cloud fields when reasonable suite of physics packages and reanalysis data 
are used. Here we propose to improve the simulated cloud fields with the aid of COSP 
(Cloud Feedback Intercomparison Project [CFMIP] Observation Simulator Package) and a 
deep learning neutral network tool, Generative Adversarial Network. We first select 
optimal combination of initiation state (the selection of reanalysis data) and physical 
packages (namely microphysics, cumulus parameterization, planetary boundary layer 
scheme) for the cloud simulation. Then with modeled and observed cloud fields, we 
train the GAN, so that we can perform super-resolution and image-to-image translation 
applications to modeled cloud microphysical fields over Texas. The modeled cloud fields 
can gain much detailed fine features and become more accurate compared to observed 
cloud fields. Improved cloud fields will undoubtedly benefit Texas air quality calculation. 
 
The objectives are: 
 

(1) To conduct a series of WRF simulations as well COSP analysis to find an optimal 
combination of physics suite and reanalysis input for modeling clouds fields 
over Texas; 

(2)  To train a GAN model over the time series of modeled cloud fields so that the 
macro- and microphysical properties of modeled clouds are more accurate 
compared to observations.     

2.0 Organization and Responsibilities 
 

2.1 Project Personnel 
 
Dr. Zheng Lu will be the Principle Investigator (PI) of the project and will guide one 
graduate students from Department of Atmospheric Sciences. Dr. Lu will also be 
responsible for all quality assurance (QA) activities related with WRF modeling, satellite 
data analysis, and GAN training. Specifically, Dr. Lu will audit the data quality of model 
input data, cloud properties produced by WRF, the satellite data processing, the code 
and input data of GAN training. The graduate student will perform most of the actual 
model simulation and generate all the data. A minimum of 10% of the input and output 
data will be audited by Dr. Lu. Dr. Lu and the graduate student will cross-examine any 
additional source code developed to ensure all coding errors are fixed before using the 
model for production. 
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2.2 Project Schedule  
 
PI (Dr. Lu) and a graduate student majored in Atmospheric Science promise to deliver the 
following results as shown in the table. 
 
The proposed work will be done within one year, starting from Sept. 1, 2020. The task 1 
and task 2 will be conducted in parallel. After we find the optimal configuration, we will 
conduct long-term simulation. We plan to spend six months performing GAN training 
and improving the cloud fields. The last month is for organizing the whole scientific 
findings and writing reports.  
 
 09/

20 
10/
20 

11/
20 

12/
20 

01/
21 

02/
21 

03/
21 

04/
21 

05/
21 

06/
21 

07/
21 

08/
21 

1. Find optimal WRF 
model configuration  

            

2. Synergize COSP with 
WRF outputs 

            

3. Train a GAN to 
improve cloud simulation  

            

4. Final report 
 

            

 
 

3.0 Model Selection 
 
WRF model: 
In this proposed work, we plan to use Weather Research and Forecasting model (WRF) 
[Skamarock & Klemp, 2008] version 4.0 to generate cloud fields. 
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The domain will be set up with Texas in the center as shown in the Figure 1. Both outer 
domain and inner domain in Figure 1 has 256 (west-east) by 256 (south-north) grids. The 
horizontal resolutions are 12 km and 4 km for outer and inner domain, respectively. The 
model grid number of 256 is preferred, because it is automatically suitable for training 
GAN. For example, in GAN training, we use a 2×2 stride to downsample the input 
“images” and filters with numbers like 64, 128, and 256. Modeled cloud fields that we 
need from simulations are cloud water path (sum of liquid and ice water path, CWP, in 
kg m-2); cloud fraction (CF, in %); cloud top height (CTH, in m) and cloud optical thickness 
(COT, unitless). These four cloud fields will be compared against satellite observations. 
This will result in audits of well in excess of 10% of WRF model inputs and outputs. 
Results and QA procedure will be documented in the interim and final reports. 
 
GAN: 
The other model used in our study is Generative adversarial networks, which are a type 
of deep learning technique [Goodfellow et al., 2014]. A GAN contains two neutral 
networks (NN), a generator and a discriminator. The purpose of the generator is to 
generate fake samples of data/image and tries to “fool” the discriminator. The 
discriminator on the other hand tries to distinguish the real and fake samples — in other 
words, two NNs try to compete each other and play zero-sum game. The GANs are 
formulated as a mini-max game, where the discriminator is trying to minimize its reward 
V: 𝑚𝑖𝑛 𝑚𝑎𝑥 V(D, G) = 𝐸 ~ [log 𝐷(𝑥)] + 𝐸 ~ [log(1 − 𝐷 𝐺(𝑧) )] 
, where x is satellite observed images of CWP, CF, or CTH, and COT, z is COSP simulation 
outputs of CWP, CF, CTH, and COT. 
 
We consider the 2D cloud properties (CWP, CF, and COT) as different layers of one 
“image” and apply one GAN model training. We will run multiple years of WRF 
simulations with the optimal configuration (discussed in section 4.0), feed vertical 
profiles of variables into COSP, which generate pseudo-observed CF, CWP, and COT, as 
input data for the generator to generate fake cloud fields. These input data will be 
audited for data quality well in excess of 10% of COSP outputs to comply with the QA 
requirements for this project. The results this audit of data quality and QA procedures 
will be documented in the interim and final reports. Target or real fields is simply the 
corresponding observed MODIS CF, CWP, and COT fields. 
 
Figure 2 shows the workflow of GAN training, which contains two parts. In the first part, 
only discriminator is trained as the network is only forward propagated. The 
discriminator is trained on target data (observed cloud fields) for n epochs and see if it 
can correctly predict them as real. Also, in this part, the discriminator is also trained on 

Figure 1 Potential domain setup with Texas in 
center 
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the fake generated cloud fields from the generator and see if it can correctly predict 
them as fake. In the second part, the generator is trained while the discriminator is idle. 
After the discriminator is trained by the generated fake cloud fields of the generator, we 
can get its predictions and use the results for training the generator and get better from 
the previous state to try and fool the discriminator. The above method is repeated for a 
few epochs and then manually check the fake cloud fields how it seems compared to 
target cloud fields. 

 
Figure 2. workflow of GAN training and the architecture of generator 

 
4.0 Model design  
 
WRF model: 
We will use a following suite of physical packages is specifically recommended for 
simulations over CONUS (CONtinental U. S.). Namely, they are new Thompson 
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microphysics scheme [Thompson et al., 2008], Multiscale Kain-Fritsch scheme for 
cumulus parameterization [Zheng et al., 2016] (only for outer domain); YSU scheme for 
boundary layer scheme (PBL) [Hong et al., 2006]; RRTMG radiation scheme for both 
shortwave and longwave radiation calculation [Iacono et al., 2008]; and unified Noah 
land-surface model [Koren et al., 1999]. For CONUS application, the initial and boundary 
conditions (IC and BC) of model is often driven by 6-hourly 12-km North American 
Mesoscale Analysis [e.g. Li et al., 2008].  
 
On this basis, we plan to find the optimal physics suite as well as reanalysis input best 
for Texas application and/or cloud field simulations. For inner domain, two physics 
packages, namely microphysical scheme and PBL scheme greatly control the cloud field 
simulation. The selection of re-analysis data also strongly affects large-scale dynamic 
and resulting cloud deck patterns. Here we plan to run several groups of one year of 
simulations with different combination of physics packages and reanalysis datasets, the 
candidate of which are shown in Table 1.  
 

Table 1 Physics packages and reanalysis-data used for WRF simulation 
 
Physical parameterization scheme   Acronym  Reference 

Cumulus  Multiscale Kain-Fritsch msKF Zheng et al. [2016] 

Microphysics 1.5-moment 6-class Thompson Thompson Thompson et al. [2008] 

 2-moment 6 class Morrison Morrison Morrions et al. [2009] 

 WRF Single-Moment 6-class scheme WSM6 Hong et al. [2006a] 

PBL Asymmetric Convective Model PBL ACM2 Kolling et al., [2013] 

 Yonsei University scheme YSU Hong et al. [2006b] 

 Grenier-Bretherton-McCaa scheme GBM Grenier and Bretherton, 
[2001] 

Reanalysis 
input 

North American Mesoscale Analysis NAMA Rogers et al. [2009]  

 NCEP final (FNL)  FNL Rogers et al. [2009]  

 ECMWF ECMEWF NCEP [2000] 

 
For outer domain, we will use multiscale Kain-Fritsch cumulus parameterization, the 
performance of which is tested over Texas area [Zheng et al., 2016]. As for 4km domain, 
the cumulus convective scheme can be turned off since the WRF model can explicitly 
resolve the vertical motion. Totally 3×3×3=27 =27 groups of simulations will be 
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performed and compared to satellite observations (more details of evaluation discussed 
in Section 2.2). Here we will focus on the ozone season (Mar. 1 to Nov. 30) of year 2018 
for the simulations because of data availability. 
 
 After optimal combination of physics packages is selected, we use this physics suite 
with reanalysis data and conduct multiple years of simulations with the same domain 
setup. Considering the satellite (MODIS and CALIPSO) data availability, the simulation 
period will be from 2007 to 2020. Therefore, ideally 10,228 simulation-observation 
samples (two samples per day) will be used in training GAN (80% in training and 20% in 
evaluation). The satellite data used here have already been audited by NASA and they 
meet our quality criteria.  
 
GAN: 
 
Figure 2 also shows the architecture of two deep NNs. The generator has this “encoder-
decoder” structure. The encoder-decoder architecture consists of: 

• encoder: C64-C128-C256-C512-C512-C512-C512-C512 
• decoder: C512-C512-C512-C512-C256-C128-C64 

where C refers to a block of Convolution-BatchNorm-LeakyReLU layers and the number 
indicates the number of filters. The encoder part of the model is comprised of 
convolutional layers that use a 2×2 stride to downsample the input source “image” 
down to a bottleneck layer. The decoder part of the model reads the bottleneck output 
and uses transpose convolutional layers to upsample to the required output image size. 
Both encoder and decoder use ReLU or LeakyReLU activation function. The Adam 
optimizer will be used in training [Kingma & Ba, 2014]. The GAN will be train on a high-
performance cluster that is equipped with GPU and installed with software like python 
and tensorflow.  
 
A well-trained GAN is expected to 1) adjust large-scale cloud distributions. With GAN-
generated COT, CWP, CF, and CTH, we can revise 3D field of clouds accordingly, for 
example, increasing or decreasing cloud water content proportionally to GAN-generated 
CWP and eliminating false positive signals. 2) We can generate the fine features 
associated with modeled cloud decks, for example, adjust cloud fractions associated 
with diffuse fair-weather cumulus. 3) We can improve the accuracy of modeled cloud so 
that COT, CWP, as well as CTH become much closer to the observations. For example, 
we can revise cloud brightness by modifying cloud hydrometeor size based on GAN-
generated COT following [George and Wood, 2010]. As discussed in abstract, improved 
cloud fields over Texas are expected to benefit the air quality calculation. 
 
5.0 Model Calibration 
 
We need to calibrate the hyperparameters in GAN technique. A hyperparameter is a 
parameter whose value is used to control the learning process. The hyperparameters 
included learning rate; the number of epochs; the selection of activation function (ReLU 
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or LeakyReLu); the selection of optimizer. Depending on the performance, we plan to 
adopt XGBoost, which is an open-source software library which provides a gradient 
boosting framework for Python. The benefit of using this software is that the 
performance of hyperparameter sets will be automatically evaluated.  
 
Since GAN is directly trained by comparing to satellite observations, any bias in satellite 
retrievals can be translated to GAN training. We found that biases in CTH retrieval from 
CALIPSO observation and CF and COT retrievals from MODIS observations are relatively 
small. In contrast, bias in CWP retrieval is relatively large since many assumptions 
applied in algorithm (https://modis.gsfc.nasa.gov/data/atbd/atbd_mod05.pdf). Here we 
plan to count the Quality Assurance (QA) flag of each CWP retrieval for every snapshot. 
If the low-quality retrieval occurrence is over 50%, then we will eliminate this snapshot 
for the training and evaluation samples. 
   
6.0 Model Evaluation 
 
To facilitate the direct comparison between model simulation with satellite observation, 
we will use COSP [Bodas-Salcedo, 2011]. Modeled vertical profiles of temperature, 
humidity, hydrometeor mixing ratios, cloud optical thickness and emissivity (a function 
of cloud water content and particle size), as well surface temperature at satellite 
overpassing time are feed into COSP. Firstly, the vertical profiles of model grids are 
broken into sub-columns to commensurate satellite pixels. Next, vertical profiles of sub-
columns are passed to several instrument simulators, which apply models to simulate 
the radiance signals received by each sensor. Finally, statistical modules gather output 
from all instrument simulators, and build pseudo-cloud fields that can be directly 
compared to observations.  
 
Usually for each day, MODIS will generate two snapshots (granules) of 2D cloud fields 
over Texas (10:30 and 13:30 local time), while CALIPSO observation will generate two 
swaths (cross-sections) of cloud profiles (daytime and nighttime) over Texas.  
 
Model performance during each snapshot will be evaluated using three metrics from 
Taylor diagram, namely the spatial correlation coefficient (Pearson correlation of the 
fields, 𝑟), ratio of standard deviations (𝜎1/𝜎2), and root mean square error (RMSE) of 
CWP, CF, and COT [Taylor, 2001], where 𝜎 is calculated from all values of COSP grids, 
RMSE is calculated by: 

𝑅𝑀𝑆𝐸 = 1𝑁 (𝑀 − 𝑂 )  

N is the total number of COSP grids, Mi and Oi are the modeled and observed cloud field 
values over the grids. In addition to these three metrics, we also added normalized 
mean bias (NMB), which is calculated as: 
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𝑁𝑀𝐵 =  1𝑁 ∑ (𝑀  −  𝑂 )∑ 𝑂  

 
The objective of using NMB and RMSE as metrics is to evaluate whether the WRF model 
systematically under- or over-estimates the cloud water amount and cloud fractions 
over the domain. The correlation coefficient is to evaluate the spatial pattern of cloud 
simulations. The ratio of standard deviations (of CF) is to examine whether model can 
capture fine features (e.g. fine weather cumulus). For each snapshot, we rank the 
performances of 27 experiments in simulating cloud field variables based on all four 
metrics and score them. The experiment that achieves the highest score will be 
considered as the optimal configuration.  
 
7.0 Model Document 
 
Descriptions of the WRF and GAN model configuration, input data, hardware and 
software requirements, scripts, operating instructions, output of model runs and 
interpretation, and results of the model calibration, verification, and evaluation will be 
provided in the project final report.  
 
The final product of this project is easily accessible to external users. GAN code will be 
upload to Github, so that external users can follow the workflow and retrain the weight 
matrix of GAN on the basis of our work. If the domain and model configurations are 
exactly the same as our study, the weight matrix of GAN can be directly applied to their 
modeled cloud fields.  
 
8.0 Reporting 
 
AQRP requires certain reports to be submitted on a timely basis and at regular intervals. 
A description of the specific reports to be submitted and their due dates are outlined 
below. One report per project will be submitted (collaborators will not submit separate 
reports), with the exception of the Financial Status Reports (FSRs). The lead PI will 
submit the reports, unless that responsibility is otherwise delegated with the approval 
of the Project Manager. All reports will be written in third person and will follow the 
State of Texas accessibility requirements as set forth by the Texas State Department of 
Information Resources. Report templates and accessibility guidelines found on the AQRP 
website at http://aqrp.ceer.utexas.edu/ will be followed.      
 
Abstract: At the beginning of the project, an Abstract will be submitted to the Project 
Manager for use on the AQRP website. The Abstract will provide a brief description of 
the planned project activities, and will be written for a non-technical audience. 
 
Abstract Due Date:  Friday, August 28, 2020 
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Quarterly Reports: Each Quarterly Report will provide a summary of the project status 
for each reporting period. It will be submitted to the Project Manager as a Microsoft 
Word file. It will not exceed 2 pages and will be text only. No cover page is required. This 
document will be inserted into an AQRP compiled report to the TCEQ. 
 
Quarterly Report Due Dates: 
 

Report Period Covered Due Date 

Quarterly Report #1 September, October, November, 2020 Friday, November 27, 2020 

Quarterly Report #2 December 2020, January February 2021 Friday, February 26, 2021 

Quarterly Report #3 March, April, May 2021 Friday, May 28, 2021 

Quarterly Report #4 June, July August 2021 Friday, Aug 27, 2021 

 
Monthly Technical Reports (MTRs): Technical Reports will be submitted monthly to the 
Project Manager and TCEQ Liaison in Microsoft Word format using the AQRP FY20-21 
MTR Template found on the AQRP website. 
 
MTR Due Dates: 
 

Report Period Covered Due Date

Technical Report #1 September 1 - 30 2020 Thursday, September 10, 2020 

Technical Report #2 October 1 - 31, 2020 Friday, October 9, 2020 

Technical Report #3 November 1 - 30, 2020 Tuesday, November 10, 2020 

Technical Report #4 December 1 - 31, 2020 Thursday, December 10, 2020 

Technical Report #5 January 1 - 31, 2021 Friday, January 8, 2021 

Technical Report #6 February 1 - 28, 2021 Wednesday, February 10, 2021 

Technical Report #7 March 1 - 31, 2021 Wednesday, March 10, 2021 

Technical Report #8 April 1 - 30, 2021 Friday, April 9, 2021 
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Technical Report #9 May 1 - 31, 2021 Monday, May 10, 2021 

Technical Report #10 June 1 - 30, 2021 Thursday, June 10, 2021 

Technical Report #11 July 1 - 31, 2021 Friday, July 9, 2021 

DUE TO PROJECT MANAGER 
 
 
Financial Status Reports (FSRs): Financial Status Reports will be submitted monthly to 
the AQRP Grant Manager (RoseAnna Goewey) by each institution on the project using 
the AQRP 20-21 FSR Template found on the AQRP website. 
 
FSR Due Dates: 
 

Report Period Covered Due Date 

FSR #1 September 1 - 30 2020 Thursday, October 15, 2020 

FSR #2 October 1 - 31, 2020 Friday, November 13, 2020 

FSR #3 November 1 - 31, 2020 Tuesday, December 15, 2020 

FSR #4 December 1 - 31, 2020 Friday, January 15, 2021 

FSR #5 January 1 - 31, 2021 Monday, February 15, 2021 

FSR #6 February 1 - 28, 2021 Monday, March 15, 2021 

FSR #7 March 1 - 31, 2021 Thursday, April 15, 2021 

FSR #8 April 1 - 30, 2021 Friday, May 14, 2021 

FSR #9 May 1 - 31, 2021 Tuesday, June 15, 2021 

FSR #10 June 1 - 30, 2021 Thursday, July 15, 2021 

FSR #11 July 1 - 31, 2021 Friday, August 13, 2021 

FSR #12 August 1 - 31, 2021 Wednesday, September 14, 2021 

FSR #13 Final FSR Friday, October 15, 2021 

DUE TO GRANT MANAGER 
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Draft Final Report: A Draft Final Report will be submitted to the Project Manager and 
the TCEQ Liaison. It will include an Executive Summary. It will be written in third person 
and will follow the State of Texas accessibility requirements as set forth by the Texas 
State Department of Information Resources. It will also include a report of the QA 
findings. 
 
Draft Final Report Due Date:  Monday, August 2, 2021 
 
Final Report: A Final Report incorporating comments from the AQRP and TCEQ review 
of the Draft Final Report will be submitted to the Project Manager and the TCEQ Liaison. 
It will be written in third person and will follow the State of Texas accessibility 
requirements as set forth by the Texas State Department of Information Resources. 
 
Final Report Due Date:  Tuesday, August 31, 2021 
 
Project Data: All project data including but not limited to QA/QC measurement data, 
metadata, databases, modeling inputs and outputs, etc., will be submitted to the AQRP 
Project Manager within 30 days of project completion (September 20, 2021). The data 
will be submitted in a format that will allow AQRP or TCEQ or other outside parties to 
utilize the information. It will also include a report of the QA findings. 
 
AQRP Workshop: A representative from the project will present at the AQRP Workshop 
in the first half of August 2021. 
 
Presentations and Publications/Posters: All data and other information developed 
under this project which is included in published papers, symposia, presentations, 
press releases, websites and/or other publications shall be submitted to the AQRP 
Project Manager and the TCEQ Liaison per the Publication/Publicity Guidelines included 
in Attachment G of the Subaward. 
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